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Viscoelastic inertial flow driven by an 
axisymmetric accelerated surface 

By R. G. LARSON 
AT &, T Bell Laboratories, Murray Hill, NJ  07974, USA 

(Received 17 July 1987 and in revised form 1 April 1988) 

A similarity transform is used to analyse the flow of an upper-convected Maxwell 
fluid in an infinitely long cylinder whose surface has a velocity that increases in 
magnitude linearly with axial coordinate. Two types of problem are considered, the 
accelerated surface flow -when the surface velocity is outward towards the tube 
ends, and the decelerated surface flow -when it is inward. For the accelerated 
surface flow, the introduction of elasticity prevents the loss of similarity solution 
that occurs without elasticity a t  a Reynolds number (Re) of 10.25 ; with elasticity, 
solutions up to a Reynolds number of 95 were computed. As elasticity is introduced, 
normal stress gradients in an elastic boundary layer near the accelerated surface help 
offset inertially generated negative axial pressure gradients ; with sufficient elasticity 
the turning point in the non-elastic solution family at  Re = 10.25 disappears. For the 
decelerated surface flow, solutions could not be computed beyond a critical Re that  
depends on the level of elasticity considered, because a t  this critical Re, the axial 
velocity profile at the centreline becomes infinitely blunt. 

1. Introduction 
Multidimensional flows of viscoelastic fluids, with or without inertial effects, have 

proven exceedingly difficult to analyse, in general much more difficult than 
Newtonian inertial flows. This is in part because representations of viscoelasticity 
usually involve not just the inclusion of nonlinear terms in the momentum-balance 
equation, as is the case when one considers inertia, but either an additional set of 
partial differential equations that couple to each other and to the momentum- 
balance equation, or a history integral for the stress tensor, which, when substituted 
into the momentum-balance equation, produces difficult integro-differential equa- 
tions. As a result, most investigators have resorted directly to finite-element or 
finite-difference techniques to obtain approximate solutions. 

The most obvious implementations of these techniques, however, have failed to 
provide reliable answers outside the uninteresting regime in which the elastic effects 
are small and the flow is nearly that of a Newtonian liquid. Progress toward more 
robust numerical schemes has been hard-won and slow in coming. Therefore it is 
important that analytic solutions be found for non-trivial viscoelastic flows. Such 
solutions will assist both in the understanding of how elastic forces influence fluid 
motion and stress, and in the development of computational schemes better suited 
to the mathematical structure of such problems. 

Until recently, the only analytic solutions for multidimensional viscoelastic flows 
were those obtained by perturbation techniques, valid when the velocities are small, 
or the fluid is nearly Newtonian. Solutions, even exact solutions, for fluids described 
as second order or third order, should be thought of as perturbation results, since 



450 R. G. Larson 

such fluid descriptions are obtained by truncating the retarded motion expansion, 
which is itself a perturbation expansion, valid only for slow and slowly varying 
flows. 

Recently, however, similarity solutions have been discovered for certain 
axisymmetric and planar viscoelastic flows. Phan-Thien 1983 (a: 6 )  analysed the 
inertial and inertialess flows of upper-convected Maxwell and Oldroyd-B fluids 
between two rotating coaxial disks, using a similarity transform. He found that the 
inertialess flow of a Maxwell fluid between the disks becomes unstable a t  a Deborah 
number of 1.4. The Deborah number is a measure of the strength of the elastic 
compared to the viscous forces. A similarity transformation also allowed Menon et al. 
(1988) and Larson (1988) to study the flow of a Maxwell fluid in a porous cylinder. 
For a Maxwell fluid uniformly injected through the walls of the infinite cylinder they 
found a limit point or turning point a t  a Deborah number of around 0.07. 

2. Problem definition 
Here, we shall consider the inertial flow of a Maxwell fluid inside an infinite 

cylinder, when the magnitude of the axial velocity a t  the cylinder surface increases 
linearly with the axial coordinate; i.e. 

v , ( l )  = 2 ;  v,(l) = 0, (1) 

where r and z are the dimensionless axial and radial coordinates and vz and vr are the 
dimensionless axial and radial components of velocity ; see figure 1. The cylinder has 
a dimensionless radius of unity. Brady & Acrivos (1981, 1982) and Durlofsky & 
Brady (1984), who considered this problem for a Newtonian fluid, were originally 
motivated by an interest in the flow inside a long cylindrical droplet whose surface 
is dragged by an exterior extensional flow field. This and the porous-tube problem are 
closely related. I n  fact, as shown by Brady & Acrivos (1981) and discussed below, 
from each solution for the accelerated surface flow, with the boundary conditions 
given above, a solution for uniform suction from a porous tube can be obtained. The 
boundary condition for uniform suction is 

v, ( l )  = 1.  (2) 

Here the dimensionless radius of the porous tube is again unity. The boundary 
condition for uniform injection into a porous tube is given by 

v , ( l )  = -1 .  (3) 

Solutions for uniform injection can also be obtained from an accelerated surface 
problem, but with negative acceleration, corresponding to 

v,(l) = - 2 ;  v,(l) = 0. (4) 

It is difficult to imagine a physical system wherein the above boundary conditions 
could actually be achieved for a viscoelastic fluid. The choice of these boundary 
conditions is motivated by the existence of a similarity solution and hence the 
tractability of this problem, and the hope that the analysis of tractable viscoelastic 
flows will produce the understanding necessary to tackle more realistic, and less 
tractable, viscoelastic problems. 
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FIGURE 1 .  The accelerated-surface and porous-tube geometries. 

2. I .  The upper-convected Maxwell equation 

To describe the viscoelasticity of the fluid, we use the upper-convected Maxwell 
equation, 

V 

Dez+t  = 2 0 ,  (5a )  

where z E5 Z-VvT. t -z .Vv  ( 5 b )  
V 

is the upper-convected time derivative and t is the substantial time derivative. De, 
the dimensiocless Deborah number, is the relaxation time of the material multiplied 
by a characteristic strain rate, in this case the velocity on the cylinder surface divided 
by the cylinder radius. 

2.2.  Ximilarity solution 

The Maxwell equation is among the oldest and simplest constitutive equations of 
viscoelasticity ; it exhibits some of the qualitative behaviour of real viscoelastic 
materials : stress relaxation, elastic recovery and normal stresses in simple shear. I ts  
most important distinction with respect to the accelerated-surface problem, however, 
is that it is satisfied by the similarity solution 
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The dependencies of velocity and stress on z exhibited by this similarity solution are 
also consistent with the momentum balance equation, 

V p - V - z  = Rev-Vv, (7)  

where Re is the Reynolds number, as well as the continuity equation for an 
incompressible fluid, 

0 - v  = 0. ( 8 )  

Here the Reynolds number is the velocity of the accelerating surface times the 
cylinder radius, divided by the kinematic viscosity of the fluid. When the similarity 
forms, (6), are substituted into ( 5 ) ,  (7 )  and (8), all x-dependencies cancel, and a set 
of seven ordinary differential equations are obtained that involve the seven 
r-dependent functions in (6). Of these seven equations, four must be solved as 
a coupled set (Menon et al. 1988), namely, 

f '  f "  = -+ Icr + De(fIc' - f ' k  + k f / r )  
r 1 - Dei 

2.3.  Boundary conditions 

We first present boundary conditions for suction from a porous tube, and then show 
the connection between this problem and that of an accelerated surface. 

The boundary conditions for uniform suction from a porous tube, ( 2 )  and ( 6 a )  
imply that 

f(1) = 1. (13) 

f'(1) = 0. (14) 

(15) 

where P =  1 corresponds to no-slip and P =  0 to perfect slip. Symmetry and 
continuity of v, and v, a t  the centreline give 

A no-slip condition on the tube wall requires that 

Slip a t  the wall may be allowed by using, instead of (14), 

- P f ' ( l )  = ( 1  -P)  k(l), 

f ( 0 )  = f ' ( 0 )  = 0. (16) 

If i f  and h' are bounded a t  r = 0, boundary conditions for the stress similarity 

(17) 

functions a t  the centreline are obtained from the differential equations (lo)-( 12) : 

Ic(0) = h(0) = 0, 

-f"W i(0)  = 
1 - Def"(0)  ' 
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2.4. Rescaling 
We now have a complete set of boundary conditions for the differential equations 
(9)-(12). This problem can be solved with the aid of the rescaling technique 
introduced by Terrill (1964) for Newtonian flows and by Menon et al. (1988) for the 
flow of an upper-convected Maxwell fluid. We define new rescaled variables 

I 
f(.) = D C 2  IP1l-l F ( t ) >  h(r)  = lPll H ( t )  
k ( r )  z De-ip iK( t ) ,  
Re = Re* De2 lpll. 

i(r) = De-'I( t ) ,  

When these are substituted into (9)-(12), rescaled equations are obtained : 

- K ~ + P ' K  -F (.. + 4) 
F F"=-+ 
5 I - 1  

The boundary conditions at  the centreline become 

(24) 
- F"(0)  

E'(0) = F(0) = 0, K(0)  = H ( 0 )  = 0, I ( 0 )  = -F,,(0). 

The no-slip boundary condition a t  the wall is satisfied by finding a rescaled 
position, [,, at which F = 0. Thus 

F(&) = 0. ( 2 5 )  

Since a t  5 = [,, r and f must be unity, 
1 1  1 = y = De-ip-2 5 

1 s, 

1 = f ( 1 )  = DeP Ipll-' F ( Q .  

These two equations allow us to determine De and p,: 

Thus the suction problem can be solved by choosing a value of F ( O ) ,  and integrating 
out to t,, the point a t  which the wall boundary conditions are satisfied. The values of 
6, and F ( t s )  allow a determination of De and p,. 

The accelerated-surface problem can be solved by the same rescaling, except that 
the stopping condition is no longer F = 0 but, from (2) and (6a ) ,  is 

F(t0)  = 0, (29) 
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where 5, is the rescaled radial location of the accelerated surface. From (19), a t  the 
accelerated surface, 

giving 

Now for the accelerated-surface problem, the boundary conditions on F and E”, 
and the assumption that F has a t  least two derivatives, imply that F has an inflexion 
point where F = 0, at some 5 between 0 and to. At the inflexion point, the no-slip 
boundary condition for the porous-tube problem is satisfied. Thus in the rescaled 
variables, a solution to the accelerated-surface problem contains on a smaller domain 
a solution to the suction problem. 

The problem of injection of fluid into a porous tube also has solutions that are 
subsets of solutions to an accelerated-surface problem. For this case the relevant 
boundary conditions a t  the accelerating surface are 

w,(l) = - 2 ;  w,(l) = 0. (32) 

Thus the surface a t  r = 1 has a negative acceleration, that is a deceleration. In  terms 
of the similarity functions, these boundary conditions lead to 

f’(1) = - 1 ;  f ( 1 )  = o .  (33) 

Thus suction into a porous tube is a subset of the accelerated surface flow, and 
injection is contained in the decelerated surface flow. We therefore concentrate 
hereinafter on the accelerated and decelerated surface flows. 

3. Results 
3.1. Accelerated surface 

We solved this problem by a Runge-Kutta integration of the rescaled equations 
(20)-(23), starting from the centreline and integrating toward the accelerating 
surface. The step size typically used is A( = 5 x lop4, although smaller steps were 
used under conditions discussed shortly. As described in Menon et al. (1988) and 
Larson (1988), one must begin the integration with a perturbation expansion about 
6 = 0, since P, which is in the denominator of (22) and (23), goes to zero as [+ 0. The 
perturbation expansions are given in the Appendix. Solving the equations for a range 
of A = F ( 0 )  and Re*, one can extract De, Re and p ,  from the stopping conditions, 
(31) and (19). 

Figure 2 shows p ,  as a function of Re for De ranging from 0.05 to 1.2. At small 
Deborah number, De = 0.05, there is a turning point a t  Re = 10.1. Brady & Acrivos 
(1981) solved the accelerated-surface problem for Newtonian fluids, De = 0, and 
found a turning point a t  Re = 10.25. Thus our results are consistent with theirs. As 
De is increased, a second turning point initially a t  large negative p ,  approaches the 
first turning point, and by De = 0.2 the two have merged, leaving a monotonic 
relationship between Re and p , .  

For values of De of 0.2 and higher, inertia and elasticity act in opposition to each 
other in the sense that increasing inertia lowers p , ,  while increasing elasticity raises 
it. As discussed below, the similarity solution disappears in the absence of elasticity 
when, a t  Re = 10.25, the inertia of the incoming fluid near the centreline overwhelms 
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FIGURE 3. Axial velocity profiles for the accelerated surface a t  De = 0.05. The dashed line is the 
inertialess profile, with De = 0 or 0.05. (a) Re = 10.0 on the upper branch, ( b )  Re = 7.4 on the lower 
hra.nch, (c) Re = 5.7 on the lower branch. 

the braking action of viscosity. Elastic forces apparently assist the braking action of 
the viscous forces so that higher Reynolds numbers are attained before the similarity 
solution is lost. 

Figure 3 shows the axial velocity, v,, as a function of r,  for De = 0.05. The values 
of Re for which profiles are plotted are 0, 10.0, which is near the turning point, and 
then 7.40 and 5.675 on the lower solution branch. The progression of change in the 
axial velocity profile, as one follows the solution family for De = 0.05, from Re = 0 
to the turning point and along the lower solution branch, is very similar to that 
observed by Brady & Acrivos with no elasticity. Thus when De = 0.05, the influence 
of viscoelasticity on the velocity profile is small. At the turning point that occurs 
near Ke = 10 when De is small, an inflexion point appears in the velocity profile. As 
Re decreases on the lower solution branch, there develop positive or outward 
velocities greater than that of the accelerated surface ; towards the centre of the tube 
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FIGURE 4. Axial velocity profiles for the accelerated snrfacp a t  De = 0.2. The dashed line is the 
inertialess profile, with De = 0 or 0.2. (a )  Re = 14.91, ( b )  Re = 19.1, (c) Re = 28.5. 

the inward velocities become large. Because the inward velocities on the lower 
solution branch are large near the centreline, but velocity gradients are modest, 
inertial forces tend to dominate there, and one expects the pressure to be highest at 
the stagnation plane z = 0. This is consistent with the negative pressure gradient 
p ,  < 0 on the lower solution branch. Near the accelerated surface at low L)e on the 
lower solution branch, velocities are small but velocity gradients are steep and SO 

viscous forces tend to dominate. Near the accelerated surface the negative pressure 
gradient is thus expected to produce a region with velocity profile concave towards 
the stagnation plane, as is indeed seen in figure 3. 

In the absence of elasticity, the solutions with an inflexion point, that  is those on 
the lower branch, are unstable. Between Re = 10.25 and Re = 147 there are no 
solutions for De = 0, and the solutions that appear for Re > 147 are unstable 
(Durlofsky & Brady 1984). Thus the turning point a t  Re = 10.25 marks the end of 
the stable similarity solutions, in the absence of elasticity. The reason for this loss of 
similarity solution, as Brady & Acrivos found, is that at Re > 10.25, the inward 
inertia of the returning fluid near the centreline cannot be overcome by fluid 
viscosity, and a ‘collision region’ develops near z = 0, where fluid moving inward 
from positive z collides with its mirror image moving inward from negative z .  The 
collision region near z = 0 is a region of inviscid flow in which the similarity solution 
does not apply. By accounting for the inviscid collision region, Brady & Acrivos were 
able to compute numerical solutions for Re > 10.25 that were not of similarity 
form. 

Figure 4 shows the axial velocity profiles for l l e  = 0.2, as Re ranges from zero to 
28.5. At Re = 0, the velocity profile is indistinguishable from that of a Newtonian 
non-elastic fluid. Thus elasticity, a t  a small magnitude corresponding to L)e = 0.2, 
has an insignificant effect when inertia is absent. But a t  increased Re, with De held 
fixed at 0.2, the presence of this low level of elasticity has a profound effect on the 
velocity profile. In  contrast to the profiles for De = 0.05 shown in figure 3, the 
maximum positive axial velocity now always lies on the accelerated surface, and not 
inside the tube. The turning point has vanished. Thus elastic forces, when coupled to 
inertial forces, have a profound inJEuence not present when elastic forces of the same 
magnitude act alone. 

Axial velocity profiles for DP = 1.2 are shown in figure 5 .  Here the profile is very 
different from Newtonian even a t  zero Reynolds number. The velocity profile is 



Viscoelastic inertial flow driven by an  accelerated surface 457 

1 .o 

0.8 
u 
m 
- 

o.6 
3 
7 0.4 3 

0.2 

0 
-1.0 -0.5 0 0.5 1 .o 

Axial velocity, u, 

FIGURE 5.  Axial velocity profiles for the accelerated surface a t  De = 1.2. The dashed line is the 
Kewtonian, inertialess profile. (a)  Re = 0,  ( 6 )  Re = 21.6, (c) Re = 92.4. 

steeper near the accelerated surface, and blunter near the centreline, when elasticity 
of this magnitude is present than when i t  is not. As inertia increases, the velocity on 
the centreline decreases. The opposite effect of inertia on the centreline velocity is 
seen a t  De = 0.2; see figure 4. Thus inertia and elasticity combine to produce 
complicated nonlinear non-monotonic results. 

For the accelerated-surface problem, (20)-( 23) can be solved for arbitrarily large 
Deborah numbers. This contrasts to the suction porous-tube problem; where a 
singularity appears a t  De = 0.263. This may seem paradoxical in the light of our 
earlier statement that the suction problem is contained within the accelerated- 
surface problem. The resolution of the paradox lies in noting that the definition of De 
for the suction problem differs from that of the accelerated-surface problem. For the 
suction problem, De is chosen so that v, a t  the tube wall is unity ; for the accelerated- 
surface problem it  is chosen so that the velocity gradient, av,/az, is unity a t  the 
accelerated surface. As De for the accelerated-surface problem becomes large, the 
velocity gradient concentrates itself near the accelerated surface, so that the 
velocities in the part of the domain corresponding to the porous tube become small. 
When the velocities in the part of the domain corresponding to the porous tube are 
rescaled so that v, = 1 at  the porous tube wall, the Deborah number is 
correspondingly reduced. Thus as De for the accelerated surface problem approaches 
infinity, De for suction approaches 0.263. 

Although (19)-(23) can be solved for arbitrarily large De, without encountering 
any singularities, one of the similarity functions, g(r ) ,  which is not solved as part 
of the coupled set, becomes singular at a Deborah number of 2. - g ( r )  is the 
z-independent part of the normal stress, T ~ , .  g ( r )  becomes singular because there is 
a uniaxial extension, av,/az = 1 ; av,/ar = -+, on the accelerated surface. It is well 
known that for the upper-convected Maxwell equation r,, has a simple pole for a 
uniaxial extension of this magnitude at De = t.  Uniaxial extensions a t  Deborah 
numbers greater than this are not considered physically meaningful. Thus the 
velocity profiles for the accelerated surface flow with De > 2, such as those plotted in 
figure 5, have corresponding normal-stress components, r,,, that are unphysical. For 
suction from a porous tube, this pole lies outside the flow domain. Thus, the portion 
of each velocity profile in figure 5 that corresponds to suction from a porous tube, 
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FIGURE 6. Rescaled solutions for an accelerated surface. (a) A = 0.6; clockwise: Re* = 29.7, 30.0, 
30.3. (b) A = 0.67; clockwise: Re* = 27.90, 27.96, 27.99, 28.10. (c )  A = 0.70; clockwise: Re* = 
27.50, 27.56, 27.58, 27.585, 27.586, 27.587, 27.588, 27.59, 27.60, 27.62, 27.70. 

that is, the portion for which v, is nega,tive, may be considered a legitimate solution 
to the suction problem. 

For each value of De, the solution family is traced in figure 2 up to a finite value 
of the Reynolds number. For example, for De = 0.2, the solution family is traced out 
to a terminal value of Re = 28.5. Solutions a t  higher values of Re were not obtained 
because, a t  this terminal value, there developed an extreme sensitivity to the 
rescaled Reynolds number, Re”. Figure 6 shows how this sensitivity develops in the 
rescaled function -F’(<)/f;  cc u, as A = F”(0) increases. There are two types of 
solution for p ,  < 0. One is a viscous-type solution with a single inflexion point that  
is similar to the zero-Deborah-number solutions for p ,  < 0. There is also a new 
elastic-type solution with two inflexion points. These two solution types diverge from 
each other near the second inflexion point of the elastic-type solution. The rate a t  
which this divergence occurs as Re* changes depends strongly on the value of A. At 
A = 0.60, the divergence shown in figure 6 ( a )  is produced by changing Re” from 29.7 
to 30.3. When A is increased to 0.67, figure 6 ( b ) ,  a much larger divergence is produced 
by a smaller change in Re*. When A = 0.70, figure 6(c),  an even more dramatic 
divergence occurs when Re* is changed slightly from 27.50 to 27.70. Obtaining these 
solutions required an especially accurate integration ; the step size had to be reduced 
to 2.5 x When A = 0.72, a divergence as dramatic as that  shown in figure 6 (c )  
is obtained with a change in Re* of only Furthermore when A = 0.72 even 
double-precision arithmetic (14 digits) is not adequate to avoid the influence of round 
off error in the integration. Since the moderate-De solutions (De = 0.054.40) in 
which we are specially interested lie in the transition region from viscous-type to 
elastic-type solutions, we cannot trace these solutions for values of A greater than 
0.70. f 

The elastic-type solutions have steep elastic boundary layers near the accelerating 
surface. This boundary layer is evident not only in the velocity profiles of figure 6 but 
more particularly in the gradients of the normal stress rzz. Figure 7 shows the 
rescaled normal-stress similarity function - H ( f ; ) ,  which is proportional to a27,,/i322 
for A = 0.70 and Re* values of 27.59-27.70. The left-most curve corresponds to a 
modest Deborah number of De = 0.2 and the right-most to a large Deborah number, 

t Since the stopping point for the porous-tube problem, namely F’ = 0, is achieved before this 
strong divergence, solution families for the suction porous-tube problem can be traced for A > 0.70. 
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De = 0.9. For the latter, a steep boundary layer in H appears near the accelerated 
cylinder. Since - h oc - H counterbalances the pressure coefficient p ,  in the 
momentum-balance equation (9), large normal stresses would be expected to make 
the pressure coefficient p1 more positive. As De increases, the pressure coefficient does 
indeed increase, as can be seen in figure 2. In  physical terms, near the accelerating 
surface the high-shear velocity gradients and the strong uniaxial extensional flow 
tend to stretch molecules, creating gradients in tensile force that increase the 
pressure gradient, offsetting the negative pressure gradients produced by inertia. The 
extreme confinement of the elastic boundary layer to the region near the accelerated 
surface a t  modest Deborah numbers and large Reynolds numbers is evidenced by the 
collapse of a whole family of solutions into a single curve in the core region near the 
centreline, as seen in figure 6(c) .  Because of this collapse, integration from the 
centreline outward becomes ill-posed. 

Additional solution families were reported by Brady & Acrivos (1981) for 
the accelerated-surface problem for a non-elastic fluid at high Reynolds number 
(Re - 103j. We found similar solution families for the Maxwell fluid but, since 
these solutions are unstable for Newtonian fluids, we do not consider them here. 
There may also be solutions that contain subregions of negative (or inward) radial 
flow; that is, there may be solutions with multiple stopping conditions. As 
discussed in the next section, integration is stable only in the direction of radial 
flow. Thus for the accelerated-surface problem, outward integration beyond the 
first stopping condition (at which F = 0) is unstable; only the first stopping condition 
can be found with the numerical technique developed here. 

3.2. Decelerated surface 
3.2.1. Without inertia 
For the boundary conditions given in (4), the surface bounding the cylinder 
decelerates as it moves from large positive and negative x inward towards z = 0; see 
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figure 1 .  The decelerated-surface problem contains as a subset the problem of 
injection into a porous tube. 

The decelerated-surface problem is more difficult to  solve than the accelerated 
surface flow because the integration from the centreline outwards is unstable. The 
fluid’s memory of its previous deformation history requires that the integration start 
a t  a position of zero radial velocity and proceed in the direction of radial flow (Larson 
1988). For the decelerated surface, or the injection problem, this means the 
integration must start from the decelerated surface and go towards the centreline. 

As was the case for the accelerated surface, since F = 0 a t  the starting point, the 
integration must be initiated with the first few terms of a perturbation expansion 
about the starting point, in this case about f l =  6,. The Appendix contains the 
coefficients of the truncated perturbation expansion used here. Unlike the integration 
from the centreline, the integration from fl, requires that one guess values of F’(flo) 
and F(fl,).  If the guess is correct the integration will produce functions Fint(fl), 
Kin,((), Hint(() and lint(fl), that match the corresponding functions, Fpert((), Kpert(fl), 
Hpert(() and lpert(fl) from the perturbation expansion near fl  = 0. Thus an iterative 
procedure for obtaining F ( 6 , )  and F ( f l , )  is called for. We used a Newton-Raphson 
iteration ; the details are in the Appendix. 

Figure 8 shows the relationship between p ,  and De for the decelerated-surface 
problem. There is a simple pole a t  De = 0.5. This pole occurs because there is a biaxial 
extensional flow a t  the decelerated surface where av,/az = - 1 and av,/az = 2. For a 
homogeneous biaxial extension of this magnitude, the upper-convected Maxwell 
equation has a simple pole a t  De = 4. For the injection problem, which is a subset of 
the flow generated by the decelerated surface, there is a turning point a t  De = 0.08; 
see figure 9. The solutions along the upper solution branch in figure 9 are obtained 
as subsets of solutions found on the part of the curve in figure 8 labelled ‘upper- 
branch solutions’. Thus going from a Deborah number defined from the porous-tube 
problem to one defined from the decelerated surface flow ’straightens out’ the 
solution family. It is thus evident that the turning point for the injection problem 
is a manifestation of the biaxial pole of the Maxwell fluid which occurs in the larger 
domain of the decelerated surface flow. On the other hand the simple pole in De for 
the suction problem disappears on the larger domain of the accelerated surface 
flow. 

3.2.2. With inertia 
For the decelerated surface flow we could only consider the effects of small and 

moderate levels of inertia. This is because there is a limiting Reynolds number, which 
ranges from 8.7 when De = 0.046 to 6.9 when De = 0.32, beyond which our numerical 
scheme found no solutions. This limiting Reynolds number corresponds to a critical 
Re in the perturbation expansion about fl  = 0. In  this perturbation expansion, all 
coefficients higher than zeroth order are polynomials in P = p*+ Re* A 2 .  For the 
decelerated surface only solutions with p* = - 1 were found; thus P = 0 when 
Re* = 1/A2. At this Re*, terms of all order except zeroth in the perturbation 
expansion disappear. The remaining zeroth-order terms in the perturbation 
expansion correspond to a homogeneous extensional flow with homogeneous 
normal stresses and no shear stress. If the radius of convergence of the perturbation 
expansion about ( =  0 is zero, then even when all derivatives of the velocities 
and stresses a t  the centreline correspond to a purely extensional flow, away from 
the centreline the flow need not be purely extensional. Nevertheless, no solutions 
were found a t  Reynolds numbers beyond the value a t  which P = 0. 
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FIGUHE 8. Solution family for the accelerated-surface problem, with Re = 0, or any Re less 
than the critical value. 
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FIGURE 9. Solution family for the injection problem, generated as a subset of the accelerated- 
surface problem, with no inertia. 

As De approaches zero, the critical Reynolds number presumably approaches 
infinity, since no critical Reynolds number exists for the non-elastic decelerated 
surface flow. 

Inertia has virtually no effect on the relationship between p ,  and De shown in 
figure 8 for values of Re up to the largest attainable. Thus figure 8 holds for any Re 
less than about 8. 

Figure 10 contains axial velocity profiles for the decelerated surface flow. Curve ( a )  
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0 
Axial velocity, u, 

FIGURE 10. Axial velocity profiles for the accelerated surface. The dashed line is the inertialess 
Newtonian profile. (a)  De = 0.046, Re = 8.7, ( b )  De = 0.32, Re = 6.9, (c) De = 0.4994, Re = 0. 

corresponds to De = 0.046 with Re near its critical value of 8.7.  The velocity profile 
for curve (a )  is much like the Newtonian profile (dashed line), except near r = 0, 
where the inertial profile becomes blunt. The bluntness occurs because at the critical 
Re, all derivatives of v, vanish on the centreline. The influence of elasticity on profile 
( a )  is almost nil. Curve ( 6 )  corresponds to De = 0.3204, which is near the turning 
point for the injection problem, with Re = 6.9, very near its critical value for this De. 
Here there is again a blunting of the profile near r = 0, because of inertia. In addition 
there is a small change in shape over the whole range of r ,  which we found to 
be caused by elasticity. Curve ( c )  corresponds to  De = 0.4994, near the pole, with 
Re = 0. At this De, elastic forces grossly distort the profile, pushing most of the 
velocity gradient to the decelerated surface. In  the central part of the cylinder, where 
the velocity is positive, however, the profile is still very nearly parabolic. This part 
of the cylinder corresponds to the domain of the porous tube. When the velocity is 
rescaled to correspond to the injection problem in the porous tube, the nearly 
parabolic character of the velocity profile means that the velocity in the porous tube 
is nearly that of a Newtonian fluid. Thus the injection problem has nearly Newtonian 
velocities for all De ; the decelerated-surface problem has a highly non-Newtonian 
velocity profile a t  Deborah numbers near the simple pole a t  De = f. 

4. Summary 
For similarity solutions of the accelerated surface flow, we have found that the 

turning point a t  Re = 10.25, found by Brady & Acrivos in the absence of elasticity, 
disappears as elasticity is introduced, Elasticity assists the viscous forces in 
balancing the inertia of the fluid as it approaches fluid coming from the opposite 
direction. An inviscid collision region is thus avoided, or at least delayed, by the 
introduction of elasticity. Elasticity and inertia couple in a complicated, nonlinear 
fashion. Small levels of elasticity, which scarcely affect the velocity profile in the 
absence of inertia, have a major effect when inertial forces are large. When elasticity 
is small or moderate, inertia acts t o  increase the centreline velocity ; when elasticity 
is large, it decreases it. For each Deborah number, there is a maximum Reynolds 
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number beyond which the solution family cannot be traced because of extreme 
sensitivity of the solution to rescaled parameters, to the integration step size, and to 
roundoff error. This sensitivity emerges because at large Reynolds numbers and 
modest Deborah numbers the effect of elasticity is strongly confined to a boundary 
layer near the accelerating surface. Since the integration starts in the core region on 
the centreline where the level of elasticity has practically no influence, the 
integration technique becomes an ill-posed problem. 

For the decelerated surface flow, there is a critical Reynolds number for each level 
of elasticity a t  which the axial velocity profile a t  the centreline becomes infinitely 
blunt. Solutions beyond this Reynolds number were not found. The effect of inertia 
a t  levels up to the critical Re is local ; it blunts the velocity profile near the centreline. 
Elasticity serves to concentrate the velocity gradient into the region near the 
decelerated surface. A singularity induced by the extensional flow a t  the decelerated 
surface limits the range of elasticity to a maximum Deborah number o f t .  

Appendix 
A. 1. Accelerated surface 

For the accelerated-surface problem, the Runge-Kutta integration was initiated by 
taking F ,  K ,  H and I from a perturbation expansion about 6 = 0: 

The coefficients in the above expansions are obtained by putting (A 1) into the 
differential equations (20)-(23), and balancing terms of equal order in t. This 
gives 

, k = -1p A = F ( O ) ,  P = p * + R e * A 2 ,  e =  1 2 3  

P(A-  1) 
16 

Re*P(A + 1 )  ( A -  1),A - 1 A - 1  
384 4 A + l  

, k 3 = - - - -  P'-Re*(eA),  h, = ~ f 6  = 

A.2. Decelerated surface 

For the decelerated-surface problem, the integration starts a t  5 = to, and proceeds 
towards 6 = 0. Since E' = 0 a t  to, the integration must be initiated by a perturbation 
expansion about 5,: 
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The coefficients in the above are determined by matching terms of equal order in the 
differential equation. The coefficients are 

Eo(2fi + t o )  Ib2 = --h0-~1[f1 + 2 5 0 ( f 2  -t 1 2 k o ( f 3  +4f4 50)  
-24k1f3 50  +4Mf1-2f2 5 0 )  

(A 3) 

fl E F’(5,) and fi = F”(5,) must be chosen so that after (20)-(23) are integrated 
from to to the vicinity of 5 = 0, the functions &([), Kint(6), Hint(t) and Iint(<) match 
the corresponding functions, JLert(t), Kpert([), fipert(() and lpert(() from the 
perturbation expansion near 5 = 0. We used a Newton-Raphson iteration, described 
as follows, to  determine F’(co) and F”(5,). 

The perturbation expansions about 5 = 0 are determined once A = F”(0) is known. 
A can be obtained by taking Pint = Fpert at some small value of 5, say 85. (In this 
work, we take 85 = 0.05; the sensitivity to this particular choice is small.) With A 
known, K,,,,(SC), H,,,,(S[) and IDert(S[) can be calculated and compared to Kint(6(), 
fiint(8<) and Iint(8t). #”(to) and F”($) must be varied until a match is obtained. The 
two unknown quantities, F ( t o )  and F”(to), can be determined by a match of only two 
of the three functions, Kint, Hint and lint with their perturbation counterparts. In 
practice, if two of these functions match, the third also agrees closely with its 
counterpart. In  the algorithm, we matched I and K ,  because the leading-order terms 
in the perturbation expansions for these functions are zeroth and first order in 6 
respectively, compared to second order for H .  The higher order in the perturbation 
parameter for H means that i t  is small near 6 = 0;  thus it cannot be computed to as 
high as a relative accuracy near f [  = 0 as can I and K .  

The following iterative procedure was used to find F(co) and F”(5,). Assume we 
have a solution, and we know F(t0) and F”(c0) for a given to and Re*. Change one 
of the two parameters, 5, or Re* a small amount. Using the known F‘(&) and 
F”(6,) from the old solution, integrate the equations, and find the differences between 
Iint(8[) and Ipert(8[) and between Kin,(8LJ and Kpert(St). Change F(t0)  a tiny amount, 
reintegrate the equations and find new differences between the I and K .  
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Change F ( 5 , )  a tiny amount, and do the same thing. In  this way a Jacobian 
matrix for the influence of F'(5,) and F"(5,) on the differences, lint(8[)-lpert(81J, and 
Kint(8<) -Kpert(8[) is obtained. With this Jacobian matrix, a Newton-Raphson 
procedure is used to obtain a new guess for F'([,) and F(5 , ) .  This procedure is then 
repeated until both relative differences fall to within a specified tolerance, usually 
about 3 %. 

R E F E R E N C E S  

BRADY, J. F. & ACRIVOS, A. 1981 Steady flow in a channel or tube with an accelerating surface 
velocity. An exact solution to the Navier-Stokes equations with reverse flow. J .  Fluid Mech. 

BRADY, J .  F .  & ACRIVOS, A. 1982 Closed-cavity laminar flows a t  moderate Reynolds numbers. 

DURLOFSKY, L. & BRADY, J. F. 1984 The spatial stability of a class of similarity solutions. Phys. 

LARSON, R. G. 1988 Analytic results for viscoelastic flow in a porous tube. J .  Non-Newtonian Fluid 
Mech. (In the press.) 

MENON, R. K.,  KIM-E, M. E., ARMSTRONG, R. C., BROWN, R. A. & BRADY, J. F. 1987 Injection 
and suction of an upper-convected Maxwell fluid through - a porous-walled tube. J .  Non- 
Newtonian Fluid Mech. (submitted.) 

PHAN-THIEN, N. 1983a Coaxial-disk flow and flow about a rotating disk of a Maxwellian fluid. 
J .  Fluid Mech. 128, 427442. 

PHAN-THIEN, N. 1983b Coaxial-disk flow of an Oldroyd-B fluid: exact solution and stability. 
J .  Non-Newtonian Fluid Mech. 13, 325-340. 

TERRILL, R. M. 1964 Laminar flow in a uniformly porous channel. Aero. Quart. 15, 297-330. 

112, 127-150. 

J .  Fluid Meeh. 115, 427-442. 

Fluids 27, 1068-1076. 




